3,063 research outputs found

    Absence of superconductivity in the half-filled band Hubbard model on the anisotropic triangular lattice

    Full text link
    We report exact calculations of magnetic and superconducting pair-pair correlations for the half-filled band Hubbard model on an anisotropic triangular lattice. Our results for the magnetic phases are similar to those obtained with other techniques. The superconducting pair-pair correlations at distances beyond nearest neighbor decrease monotonically with increasing Hubbard interaction U for all anisotropy, indicating the absence of frustration-driven superconductivity within the model.Comment: 4 pages, 4 EPS figure

    Spin exchange and superconductivity in a t−J′−Vt-J'-V model for two-dimensional quarter-filled systems

    Get PDF
    The effect of antiferromagnetic spin fluctuations on two-dimensional quarter-filled systems is studied theoretically. An effective t−J′−Vt-J'-V model on a square lattice which accounts for checkerboard charge fluctuations and next-nearest-neighbors antiferromagnetic spin fluctuations is considered. From calculations based on large-N theory on this model it is found that the exchange interaction, J′J', increases the attraction between electrons in the dxy_{xy} channel only, so that both charge and spin fluctuations work cooperatively to produce dxy_{xy} pairing.Comment: 9 pages, 6 figure

    Comparison of the phase diagram of the half-filled layered organic superconductors with the phase diagram of the RVB theory of the Hubbard-Heisenberg model

    Get PDF
    We present an resonating valence bond (RVB) theory of superconductivity for the Hubbard--Heisenberg model on an anisotropic triangular lattice. We show that these calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta', kappa and lambda phases of (BEDT-TTF)_2X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)_2X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d_{x^2-y^2} superconductor with a small superfluid stiffness and a pseudogap with d_{x^2-y^2} symmetry. The Mott--Hubbard transition can be driven either by increasing the on-site Coulomb repulsion, U, or by changing the anisotropy of the two hopping integrals, t'/t. Our results suggest that the ratio t'/t plays an important role in determining the phase diagram of the organic superconductors.Comment: 4 pages, 3 figur
    • …
    corecore